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GENERATION OF THE TOLLMIEN–SCHLICHTING WAVE

IN A SUPERSONIC BOUNDARY LAYER

BY TWO SINUSOIDAL ACOUSTIC WAVES

UDC 532.526G. V. Petrov

The problem is solved using parabolized equations of stability for three-dimensional perturbations of
a compressible boundary layer on a flat plate. Nonlinearity is taken into account by quadratic terms
that are most significant in estimates of the viscous critical layer of the stability theory. These
terms are determined by the total field of two acoustic perturbations, and the equations become linear
and inhomogeneous. The calculations are performed for one acoustic wave being stationary in the
reference system fitted to the plate for Mach numbers M = 2 and 5. Solutions are presented, which
are identified very accurately with Tollmien–Schlichting waves at a rather large distance from the
plate edge.

In [1], the maximum amplitude of the Tollmien–Schlichting wave over the boundary-layer cross section at the
point of the loss of stability is assumed to be equal to the maximum amplitude of a perturbation initiated by sound.
Later, attempts were made to justify this assumption (see, for example, [2]). Nevertheless, the author [3], using
parabolized stability equations, obtained data indicating that a significant excess of intensity of the perturbation
in the boundary layer over the intensity of sound has a resonant character. Different (decaying) modes of eigen
perturbations are excited. The phase velocities of sonic and subsonic increasing modes do not coincide by definition.
It follows from here that an acoustic wave can excite a Tollmien–Schlichting wave only by interacting with other
boundary-layer perturbations.

An action with wave parameters close to parameters of the instability wave may be performed by two acoustic
waves through quadratic cross terms of nonlinear equations for perturbations, since the frequencies and wave vectors
are summed. In a supersonic boundary layer, one of the acoustic waves may be stationary in the reference system
fitted to the plate. This case is of greatest interest, since the stationary perturbation is related to the wetted object
and may have a different nature (for instance, surface roughness).

Following [4], we use an orthogonal coordinate system (ξ, ψ, z), where the curves ψ = const are streamlines
of an undisturbed stationary boundary layer (ψ is the stream function) in the plane z = const perpendicular to the
leading edge of the plate, and the coordinate ξ on the wall is the distance to the leading edge. Eliminating terms
caused by curvature of the streamlines, which have the order R−2 in the case of a flat plate (R =

√
u∞ξ/ν∞, the

subscript ∞ refers to free-stream parameters), from equations of compressible fluid dynamics, we obtain

div v = e, dtρ+ ρe = 0, ρ dtv1 − h1(ρv2
2 − τ22) = −∂1p+ div τ 1,

ρ dtv2 + h1(ρ1v1v2 − τ12) = −∂2p+ div τ 2, ρ dtv3 = −∂3p+ div τ 3,

ρ dtH = ∂tp+ div q, H = h+ (v2
1 + v2

2 + v2
3)/2, τ k = (τk1, τk2, τk3),

qk = λ∂kT + vτ k, τkk = µskk (k = 1, 2, 3), skk = 2(∂kvk − e/3) (k = 1, 3),
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s22 = 2(∂2v2 + h1v1 − e/3), τk3 = µ(∂kv3 + ∂3vk) (k = 1, 2),

τ12 = µ(∂2v1 + ∂1v2 − h1v2), h1 = ∂1 lnH2,

where ∂t = ∂/∂t, ∂1 = ∂/∂ξ, ∂2 = (1/H2)∂/∂ψ, ∂3 = ∂/∂z, dt = ∂t +
3∑
k=1

vk∂k, div v =
3∑
k=1

∂kvk + h1v1 (for q

and τ k, the expressions are similar), the Lamé coefficient H2 = 1/(ρu) is determined by undisturbed stationary
parameters, (v1, v2, v3) = (u, v, w) is the velocity vector in the coordinate system (ξ, ψ, z), t is the time, p is the
pressure, T is the temperature, h is the enthalpy, ρ is the density, µ is the viscosity, λ is the thermal conductivity,
and ν = µ/ρ.

The quantities u, v, w, p, h, τ12, τ23, and q2, whose perturbations are used as the basic dependent variables of
stability equations in [3], can be represented as the sum a+ â of boundary-layer and perturbation parameters. The
remaining quantities are approximately represented as the sum a + â + ǎ, where â and ǎ are linear and quadratic
terms with respect to perturbations of the basic quantities, for example, Ȟ = (û2 + v̂2 + ŵ2)/2. Obviously, if
different parameters are used as the basic ones (for example, density, temperature, or total enthalpy instead of
pressure and enthalpy), the difference in results may be eliminated by reconstruction of third-order and higher
terms in equations for perturbations. The quadratic term of the product is written in the form Š(ab) = âb̂+ab̌+bǎ.
Using the relations Š(dtρ) = ∂̂ρ̂+ dρ̌ and Š(ρ dta) = d̂â+ ρ̂ ∂̂a+ ρ̌u ∂1a+ ρ dǎ, where

∂̂ = û ∂1 + v̂ ∂2 + ŵ ∂3, d̂ = ρ ∂̂ + ρ̂ d, d = ∂t + u ∂1, (1)

we obtain the following equations for perturbations:

(∂1 + h1)û+ ∂2v̂ + ∂3ŵ = ê+ ě, ρê = −(e+ d)ρ̂− ∂̂ρ, ρě = −(ê+ ∂̂)ρ̂− (e+ d)ρ̌,

(ρ d+ d̂)û+ (ρ+ ρ̂)(û ∂1 + v̂ ∂2)u+ (ρ̂+ ρ̌)u ∂1u− h1(ρv̂2 − τ̂22 − τ̌22)

= −∂1p̂+ (h1 + ∂1)(τ̂11 + τ̌11) + ∂2τ̂12 + ∂3(τ̂13 + τ̌13),

(ρ d+ d̂)v̂ + h1(ρuv̂ + ρûv̂ + uρ̂v̂ − τ̂12) = −∂2p̂+ (h1 + ∂1)τ̂12 + ∂2(τ̂22 + τ̌22) + ∂3τ̂23,

(ρ d+ d̂)ŵ = −∂3p̂+ (h1 + ∂1)(τ̂13 + τ̌13) + ∂2τ̂23 + ∂3(τ̂33 + τ̌33),

(ρ d+ d̂)Ĥ + (ρ+ ρ̂)(û ∂1 + v̂ ∂2)H + (ρ̂+ ρ̌)u ∂1H + ρ dȞ

= ∂tp̂+ (h1 + ∂1)(q̂1 + q̌1) + ∂2q̂2 + ∂3(q̂3 + q̌3),

τ̂12 = (µ+ µ̂)(∂2û+ ∂1v̂ − h1v̂) + (µ̂+ µ̌) ∂2u, τ̂23 = (µ+ µ̂)(∂2ŵ + ∂3v̂), (2)

q̂2 = (λ+ λ̂) ∂2T̂ + (λ̂+ λ̌) ∂2T + λ∂2Ť + uτ̂12 + τ12û+ τ22v̂ + τ̂12û+ τ̂22v̂ + τ̂23ŵ,

τ̂13 = µ(∂1ŵ + ∂3û), τ̌13 = µ̂τ̂13/µ, τ̂kk = µŝkk + skkµ̂, τ̌kk = µškk + skkµ̌+ µ̂ŝkk,

ŝ11 = 2(∂1û− ê/3), ŝ22 = 2(h1û+ ∂2v̂ − ê/3),

ŝ33 = 2(∂3ŵ − ê/3), š11 = š22 = š33 = −2ě/3,

q̂1 = λ∂1T̂ + λ̂ ∂1T + uτ̂11 + τ11û+ τ12v̂, q̂3 = λ∂3T̂ + uτ̂13 + τ33ŵ,

q̌1 = λ̌ ∂1T + λ∂1Ť + λ̂ ∂1T̂ + uτ̌11 + τ̂11û+ τ̂12v̂ + τ̂13ŵ,

q̌3 = λ∂3Ť + λ̂ ∂3T̂ + uτ̌13 + τ̂13û+ τ̂23v̂ + τ̂33ŵ, e = (h1 + ∂1)u, τ12 = µ∂2u,

s11 = 2(∂1u− e/3), s22 = 2(h1u− e/3), s33 = −2e/3.

The Navier–Stokes equations that are not supplemented by equations of state are not changed by introducing
the following scales: ν∞/u

2
∞ for time, ν∞/u∞ for length, µ∞ for the stream function, ρ∞u2

∞ for pressure and
viscous stresses, u2

∞ for enthalpy, µ∞u2
∞/T∞ for thermal conductivity, and ρ∞u3

∞ for the heat flux. The remaining
quantities are normalized to their free-stream values. In the scales used, as R → ∞, the thickness of the critical
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layer in order of magnitude is R2/3 (rather than R−1/3, as in [4], where it was estimated with respect to the
boundary-layer thickness), ∂t, ∂1 = O(R−1), ∂2 = O(R−2/3), p̂, v̂ = O(1), û, ŵ, ĥ = O(R1/3), d = O(R−4/3), and
τ̂12, τ̂23, q̂2 = O(R−1/3); for the main flow parameters, we have ∂1 = O(R−2) and ∂2 = O(R−1). The estimate p̂ is
assumed to be the same as that outside the critical layer due to continuity of pressure perturbations at the critical
point in equations of the inviscid stability theory.

Rejecting in (2) nonlinear terms of order R−1/3 with respect to the main linear terms, we obtain

∂2v̂ − L̂v = −(1/ρ)[∂̂ρ̂− (ρ̂/ρ)(dρ̂+ v̂ ∂2ρ) + dρ̌],

∂2(p̂− τ̂22)− L̂p = −ρ ∂̂v̂, ∂2τ̂12 − L̂12 = d̂û+ ρ̂v̂ ∂2u, ∂2τ̂23 − L̂23 = d̂ŵ,

∂2q̂ − L̂q = d̂ĥ+ u d̂û+ ρûv̂ ∂2u+ ρ̂v̂ ∂2H + ρ(û dû+ ŵ dŵ), (3)

∂2û− L̂u = −(µ̂/µ) ∂2û− (µ̌/µ) ∂2u, ∂2ŵ − L̂w = −(µ̂/µ) ∂2ŵ,

∂2T̂ − L̂T = −(λ̂/λ) ∂2T̂ − ∂2Ť − (λ̌/λ) ∂2T − (ûτ̂12 + ŵτ̂23)/λ,

where q̂ = q̂2; the operators ∂̂, d̂, and d are defined in (1); L̂v, L̂p, . . . are linear expressions that do not contain ∂2

and are given below in a parabolized form. In the case of a perfect gas with a constant Prandtl number Pr, the
latter equation is transformed to

∂2ĥ− L̂h = −µhĥ ∂2ĥ− µhhĥ2 ∂2h− Pr (ûτ̂12 + ŵτ̂23)/µ

and µ̂/µ = µhĥ, µ̌/µ = µhhĥ
2, µh = d lnµ/dh, µhh = (d2µ/dh2)/(2µ), Ť = 0, and ρ̌ = ρ̂ĥ/h.

System (3) with regard for the equations of state and laws of viscosity and heat conductivity of the gas has
the form KẐ = N̂(Ẑ), where Ẑ = (v̂, p̂, τ̂12, τ̂23, q̂, û, ŵ, ĥ) is the vector composed of perturbations of the main
parameters and K and N̂ are the linear (matrix) and nonlinear differential operators, respectively. The solution of
system (3) is sought as the sum Ẑ+ Ẑ1 + Ẑ2, where Ẑ1 and Ẑ2 are linear perturbations initiated by sound (see [3]).
If Ẑ is an infinitesimal of higher order than Ẑ1 and Ẑ2, it obeys the equation

KẐ = N̂(Ẑ1 + Ẑ2), (4)

i.e., nonlinear equations become inhomogeneous linear ones.
For acoustic waves of the form Ẑj = Re [Z̃j exp(iϕj)] (ϕj = αjξ + βjz − ωjt and Re is the real part), the

amplitude functions are determined by the equations LZ̃j = 0. The right side of Eq. (4) consists of the products
of components of the vectors Z̃j and Z̃k: âj b̂k = Re {ãj b̃k exp[i(ϕj + ϕk)] + ãj b̃

∗
k exp[i(ϕj − ϕk)]}. In the present

work, we are interested in cross combinations j 6= k, and âb̂ = Re {(ã1b̃2 + ã2b̃1) exp[i(ϕ1 + ϕ2)]}.

The solution of Eq. (4) of the form Ẑ = Re {Z̃ exp[i(
∫
αdξ + βz − ωt)]}, ω = ω1 + ω2, β = β1 + β2 is

constructed by solving the equation

LZ̃ = N exp
[
i

∫
(α3 − α) dξ

]
, α3 = α1 + α2, (5)

where L and N are, respectively, the operator and vector corresponding to the left and right sides of system (3)
with the substitutions ∂t → −iω, ∂1 → iα + ∂1, ∂3 → iβ, and âb̂ → ã1b̃2 + ã2b̃1 = ãj b̃k (the sign of summation
is omitted). The right sides in the approximation used, with regard for the estimate ∂1 = O(R−5/3) (the estimate
differs from that given previously, since the operator ∂1 acts here on the amplitude functions ã rather than on the
perturbation â itself), take the form

Nv = −D̃j r̃k + ρṽj(∂2T̃k − ρT̃k ∂2T ) + 3ρ2ucj T̃j T̃k, Np = −ρ(D̃j + ṽj ∂2)ṽk,

N12 = d̃j ũk + ρṽj r̃k ∂2u, N23 = d̃jw̃k,

Nq = d̃j h̃k + u d̃j ũk + ρ[ṽj(ũk ∂2u+ r̃k ∂2H) + ũj(ucj + ∂1)ũk + w̃j(ucj + ∂1)w̃k], (6)

Nu = −µhh̃j ∂2ũk − µhhh̃j h̃k ∂2u, Nw = −µhh̃j ∂2w̃k,

Nh = −µhh̃j ∂2h̃k − µhhh̃j h̃k ∂2h− Pr (ũj τ̃12k + w̃j τ̃23k)/µ,
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where D̃j = i(α3 − αj)ũj + i(β − βj)w̃j , ucj = iαju − iωj , d̃j = ρ[D̃j+ (uc3 − ucj)r̃j + (ũj + ur̃j)∂1 + ṽj∂2], and
r̃ = ρ̃/ρ.

The transition to the similarity variable of the boundary layer η is performed using the formulas
∂1 = R−1(∂ + f1 ∂η) and ∂2 = R−1ρ ∂η, where R =

√
ξ, f1 = −f0u, f0 = f/(2Ru2), f = ψ/R, ∂ = 0.5∂/∂R,

and ∂η = ∂/∂η. The calculations [3] showed that the maximum of the amplitude of the forced perturbation is
located near the coordinate line η = const; hence, we may consider that ∂ = O(R−1) and ignore this derivative in
the substitution of variables in system (6). As the homogeneous linear part of the transformed equations (5), we use
the equations of [3] parabolized with the help of estimates in terms of the integer powers of R. In the calculations,
we reject the term containing ∂ṽ/∂R, which allows us to reduce the step of the marching scheme of integration due
to an insignificant decrease in accuracy from R−5/3 to R−4/3. The final equations have the following form:

ṽ′ = ṽ∗ − gmuT ∂π̃ − T ∂ũ+ gm1u ∂h̃− gmf2T π̃
∗ − f3ũ

∗ + gm1f2h̃
∗

− Σ[D̃j r̃k + (h′ṽj − 3cj h̃j)h̃k/h2 − ṽj h̃′k/h],

π̃′ = π̃∗ − u ∂ṽ − f2ṽ
∗ − Σρ(D̃j + ṽ′j)ṽk,

τ̃ ′12 = ρu′ṽ + T ∂π̃ + (ic + f1u
′ + u ∂)ũ+ ixp̃+ f2u

′r̃ − ĩT + f3π̃
∗ + f2ũ

∗ + Σ(b̃1jk + ρu′b̃2jk),

τ̃ ′23 = (ic + u ∂)w̃ + iz p̃− ixτ̃13 − iz τ̃33 + f2w̃
∗ + Σ(d̃jw̃k + b̃jw̃

′
k),

ũ′ = ũ∗ + Σ(µ̃j ũ′k + µ̃jku
′), w̃′ = w̃∗ + Σµ̃jw̃′k, (7)

q̃′ = (ρH ′ − µxu′)ṽ + (icu+ f1H
′ + f2u

′ + u2 ∂)ũ

+ [ic − (i2x + i2z)µR/Pr + u ∂]h̃+ iwp̃+ f2H
′r̃ − uĩT + f2(uũ∗ + h̃∗)

+ Σ{d̃j h̃k + b̃j h̃
′
k + ub̃1jk + ρ[u′ṽj ũk +H ′b̃2jk + cj(ũj ũk + w̃jw̃k) + f3(ũj ũ′k + w̃w̃′k)]},

h̃′ = h̃∗ + Σ[µ̃j h̃′k + µ̃jkh
′ − Pr (ũj τ̃12k + w̃j τ̃23k)/µR].

Here ṽ∗ = ρT ′ṽ − (ix + f0u
′T )ũ − izw̃ − f2ρT

′T̃ − icT r̃, ũ∗ = −ixṽ + τ̃12/µR − u′µhh̃, r̃ = ρ̃/ρ = gmp̃ − ρT̃ ,
π̃∗ = (f1u

′ − f2ρT
′ − ic)ṽ + ixτ̃12 + iz τ̃23, w̃∗ = −iz ṽ + τ̃23/µR, h̃∗ = −Pru′ũ − h′µhh̃ + Pr (q̃ − uτ̃12)/µR,

p̃ = π̃ − τ̃11 − τ̃33, ĩT = ixτ̃11 + iz τ̃13, τ̃11 = 2µxũ − ẽ3, τ̃33 = 2µzw̃ − ẽ3, τ̃13 = µxw̃ + µzũ,
ẽ3 = 2µR[ρT ′ṽ − ic(gmT π̃ − T̃ )]/3, T̃ = gm1h̃, D̃j = (ix3 − ixj)ũj + (iz − izj)w̃j , d̃j = ρ[D̃j + (c3 − cj)r̃j ],
b̃1jk = d̃j ũk + b̃j ũ

′
k, b̃2jk = ṽj r̃k, b̃j = ṽj + f3(ũj + ur̃j) µ̃j = −µhh̃j , µ̃jk = −µhhh̃j h̃k, µx = ixµR, µz = izµR,

µR = µρ/R, µh = gm1d lnµ/dT , µhh = g2
m1(d2µ/dT 2)/(2µ), cj = ixju − iwj , ic = iR(uα− ω), ix = iαRT ,

iz = iβRT , iw = iωRT , f2 = f1u, f3 = f1T , Σ = exp
[
2i
∫

(α3 − α)RdR
] 2∑
j=1, k=3−j

, gm = γM2, gm1 = (γ − 1)M2,

M is the Mach number, γ is the ratio of specific heats, and ∂ = 0.5∂/∂R; the prime denotes the derivative with
respect to η.

The inhomogeneous parts of Eqs. (7) in the critical layer are R2/3 times greater in order of magnitude than
the estimate for the region outside the critical layer, i.e., the sought perturbation is generated in the critical layer
of the perturbation initiated by sound. Outside the boundary layer, the inhomogeneous terms may be neglected;
then the problem is solved with the same boundary conditions and by the same method as the problem of stability
for parabolized equations [4].

The solution of the problem for ordinary differential equations Z ′ = AZ+BZ0 +C(Z1,Z2) obtained by the
approximation ∂Z/∂R = (Z −Z0)/(R−R0) is constructed as a superposition of the solution calculated under the
condition Z = 0 at the boundary-layer edge and four fundamental solutions of the homogeneous equations Z ′ = AZ

under conditions of decay as η → ∞ and with coefficients determined by the conditions ũ = ṽ = w̃ = h̃ = 0 on
the wall. The value of α at each step in R is determined by Newton’s method if the requirement ∂π̃/∂R = 0 is
satisfied at the point of the maximum amplitude A of the mass-flow perturbation m̃ = ρũ + uρ̃ (see [4]). In the
initial cross section of the boundary layer, Z is calculated for α = α3 using local equations obtained by elimination
of all derivatives with respect to R from Eqs. (7).
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Fig. 1 Fig. 2

Fig. 3

The calculations are performed for a heat-insulated plate for M = 2 and 5. The results are represented as
dependences of the maximum relative amplitude of the mass flow Ā = A/(A1A2) over the boundary-layer cross
section on R (A1 and A2 are the amplitudes of perturbations of the mass flow of the incident acoustic waves).

For M = 2, we use the Sutherland viscosity formula with constant Ts = 110.4 K and Pr = 0.71. The
excited frequency is assumed to be equal to ω = ω1 = 4 · 10−6, and the z-component of the wavenumber is
β = β1 + β2 = 2 · 10−5. The Tollmien–Schlichting wave with the same parameters is directed at an angle of
approximately 60◦ to the flow direction.

Figures 1 and 2 (curves 1) show the results obtained for α1 = 3.1·10−5 and β1 = 3.7·10−5, which corresponds
to the angle ϕ1 = 50◦ [hereinafter, ϕ = arctan (β/α)]. The growth rates αi = Imα of forced perturbations in Fig. 1
and their amplitudes in Fig. 2 are calculated for different values of α2 for steady waves: the solid curves refer to
α2 = −2.1 · 10−5, the dot-and-dashed curves to α2 = −1.9 · 10−5, and the dotted curves to α2 = −1.8 · 10−5. The
dashed curve in Fig. 1 shows the growth rates of the Tollmien–Schlichting wave. For rather high values of R, within
the range α2 = (−1.9 · 10−5)–(−2.1 · 10−5) (ϕ2 = 42–39◦), forced oscillations are almost indistinguishable from the
growing eigen perturbation. Outside this range, the Tollmien–Schlichting wave is not excited.

Similar results obtained for α1 = 1.01 · 10−6 and β1 = 5.73 · 10−6 (ϕ1 = 80◦) are plotted in Fig. 2 (curves 2)
and Fig. 3. The solid curves refer to α2 = 9.5 · 10−6, dot-and-dashed curves to α2 = 1.1 · 10−5, and dotted curves
to α2 = 1.2 · 10−5. The instability wave shown by the dashed curve in Fig. 3 (the same as in Fig. 1) is excited in
the range of wavenumbers of the stationary external perturbation α2 = (9.5 · 10−6)–(1.1 · 10−5) (ϕ2 = 56–52◦).

The parameters of forced perturbations are rather different from the parameters of the Tollmien–Schlichting
waves at the point of the loss of stability R∗ = 1480; the coincidence is observed only for R > 3000. The effective
value of the amplitude of the excited eigen perturbation at the point of the loss of stability (receptivity coefficient)
is determined by the formula Ā∗ = Ā/Ks, where Ks = (A/A∗)s is the coefficient of spatial growth of the Tollmien–
Schlichting wave, which is also calculated as Ā, for R = 3000. The solid curves 1 and 2 in Fig. 2 refer to Ā∗ = 5140
and 2160, respectively.
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Fig. 4 Fig. 5

For M = 5, the calculations were performed for Pr = 1 and µ = T . Two-dimensional perturbations
β1 = β2 = 0, ω1 = 10−4, and α1 = 5 · 10−5 were considered. The solid curves in Figs. 4 and 5 show the results
obtained for α2 = 6.6 · 10−5, and the dot-and-dashed curves refer to α2 = 7.6 · 10−5. It is seen in Fig. 4 that the
parameters of forced perturbations in both cases coincide with the Tollmien–Schlichting wave parameters shown
by the dashed curve, beginning from R ≈ 1300. The above values of α2 correspond to the receptivity coefficients
Ā∗ = 89 and 34. For α2 = 6.5 · 10−5 (dashed curve in Fig. 5) and α2 = 7.7 · 10−5 (dotted curve), instability waves
are not excited, and perturbation amplitudes do not increase at high values of R.
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